АЗОТ — Большая Медицинская Энциклопедия

Описание

Азот представляет собой бесцветный газ без запаха и вкуса, плохо растворимый в воде, с низкими температурами плавления (-210°С) и кипения (-196°С). Простое вещество в виде N2 – основная часть атмосферного воздуха (78 %). Молекула азота обладает очень прочными связями. Состояния, в которых азот может находиться в своих соединениях, исключительно разнообразны.

Круговорот азота в природе тесно связывает геосферу и биосферу, подтверждая их единство. Существует множество бактерий, способных легко переводить одни соединения азота в другие, причем с изменением степени окисления азота. Так, например, в биосфере связывание атмосферного азота N2 и его превращение в аммиак NH3 протекает более легким способом с участием фермента – нитрогеназы.

В природе протекают и другие взаимные превращения соединений азота: нитрификация или окисление NH3 до NO2, а также восстановление нитратиона из удобрений под действием ферментов растений или анаэробных бактерий до NO2 или даже до NH3.

При обычных условиях способность азота реагировать с другими веществами невелика, и он иногда используется как инертный газ. Определяется это исключительно большой прочностью связи в молекуле N2, для ее разрыва требуется много энергии. Поэтому азот реагирует со многими металлами и неметаллами при высоких температурах.

Азот взаимодействует с активными металлами, например, Mg и Li с образованием нитридов. Также он взаимодействует с неметаллами, такими как О2, Н2, галогенами и другими, однако эти реакции возможны, как правило, при высокой температуре и в присутствии катализаторов.

Оксиды азота существуют главным образом за счет ковалентных химических связей N – O, обладают высокой способностью реагировать с другими веществами, поэтому неустойчивы.

N2O – закись азота представляет собой бесцветный газ, растворимый в воде. Называется также «веселящим газом», так как является наркотическим веществом. Применяется в анестезии. Неустойчив, легко разлагается. При повышенной температуре является сильным окислителем.

NO представляет собой бесцветный газ, плохо растворимый в воде. С кислородом NO взаимодействует очень легко с образованием бурого NO2. Молекула NO, по современным представлениям, несмотря на кажущуюся трудность её образования из простых веществ, присутствует в атмосфере в огромных количествах.

Считают, что до 7?107 тонн атмосферного азота N2 в год реагируют с кислородом О2 в результате таких высокотемпературных процессов, как сжигание топлива в промышленности и работа транспорта. Показано, что оксиды азота, как и озон, способны взаимодействовать с продуктами неполного сгорания топлива с образованием высокотоксичных пероксонитратов.

 N2O3 – азотистый ангидрид представляет собой жидкость голубого цвета, существующую только при низкой (ниже чем – 100°С) температуре. Хорошо растворяется в холодной воде с образованием азотистой кислоты (HNO2).

NO2 представляет собой бурую летучую жидкость хорошо растворимую в воде.

N2O5 – ангидрид азотной кислоты (HNO3), при нормальных условиях бесцветное, летучее, кристаллическое гигроскопичное вещество. Медленно разлагается при комнатной температуре. С водой бурно реагирует с образованием азотной кислоты. N2O5 сильный окислитель по отношению ко многим металлам, неметаллам и органическим веществам.

Практически самым важным соединением азота является его гидрид NH3 – аммиак. NH3 представляет из себя бесцветный газ, в 1,7 раза легче воздуха. По своим физико-химическим свойствам сильно отличается от молекулярного азота. Он легко сжимается и более реакционоспособен. Аммиак хорошо растворим в воде, при этом он вступает с водой в химическое взаимодействие. NH3 проявляет восстановительные свойства, в атмосфере кислорода горит.

Предлагаем ознакомиться  Осенние поделки из листьев своими руками (все новинки для детей детского сада и школы)

Азот имеет две кислородсодержащие кислоты – HNO2 и HNO3.

Азотная кислота (HNO3) – наиболее важное соединение азота. Это одна из самых сильных кислот, а концентрированная азотная кислота является сильным окислителем. Однако в зависимости от условий HNO3 восстанавливается до различных продуктов. На ход процесса влияют природа восстановителя, концентрация реагента и температура.

Азотистая кислота (HNO2) – непрочное соединение, известна только в холодных водных растворах, легко распадается. Это слабая кислота, проявляющая свойства окислителя и восстановителя. Соли азотистой кислоты – нитриты более устойчивы чем сама кислота и также обладают окислительно-восстановительной двойственностью. Нитриты более термически устойчивы чем нитраты и большинство из них хорошо растворимы в воде. Нитриты щелочных металлов плавятся без разложения.

Биологическая роль

Как уже было сказано выше, азот входит в состав органических соединений, из которых состоят органические формы жизни. Он входит в состав белков, нуклеиновых кислот, гормонов, ферментов, витаминов, то есть можно сказать, что азот в той или иной степени важен для всех органов и систем живого организма, и всех, протекающих в них процессов, поддерживающих его жизнедеятельность.

Известно, что молекулы NO способны проникать в клетки стенок кровеносных сосудов и регулировать кровоток. Кроме того, NO контролирует секрецию инсулина, почечную фильтрацию, репаративные процессы в тканях. Таким образом, NO – двуликая молекула, проявляющая как токсичное, так и несомненно полезное действие. В организме человека NO образуется в количестве примерно равным 100 мг в сутки из аргинина.

Оксид азота является важнейшим для иммунной системы человека веществом. Он стимулирует борьбу организма с патогенами, в том числе и внутриклеточными. Помимо этого, оксид азота играет большую роль в процессе передачи нервных импульсов, в том числе и сам может выступать в роли нейромедиатора, то есть передавать электрохимические импульсы в организме человека. Также оксида азота принимает участие в процессах уничтожения отслуживших свой срок молекул ферментов и «старых» клеток организма.

Оксид азота способствует образованию вещества, которое снижает силу сердечных сокращений. Однако действие NO кратковременное, несколько секунд, локализованное – вблизи места его синтеза. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.

Газообразный азот

Промышленное применение газообразного азота обусловлено его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению. В нефтедобывающей промышленности газообразный азот применяется для обеспечения безопасного бурения, используется в процессе капитального и текущего ремонта скважин.

Кроме того, газообразный азот высокого давления используют в газовых методах повышения нефтеотдачи пласта. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы, тушения эндогенных пожаров.

Газообразным азотом заполняют камеры шин шасси летательных аппаратов. Кроме того, в последнее время заполнение шин азотом стало популярно и среди автолюбителей, хотя однозначных доказательств эффективности использования азота вместо воздуха для наполнения автомобильных шин нет.

Избыток

У здорового человека колебания в содержании небелкового (остаточного) азота крови незначительны и в основном зависят от количества поступающих с пищей белков. При ряде патологических состояний уровень небелкового азота в крови повышается. Это состояние носит название азотемии. Существуют различные причины возникновения азотемии.

Это может быть недостаточное выделение азотсодержащих продуктов с мочой. Это может быть связано с нарушением функции почек и снижением уровня кровообращения, а также препятствием оттока мочи из почки после ее образования. Продукционная азотемия развивается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков при обширных воспалениях, ранениях, ожогах, кахексии и др. Нередко наблюдаются азотемии смешанного типа.

Предлагаем ознакомиться  Какую пользу дает организму кукурузная мука, как влияет на фигуру и чем вредна

Как отмечалось, в количественном отношении главным конечным продуктом обмена белков в организме является мочевина (NH2)2CO. Принято считать, что мочевина в 18 раз менее токсична, чем остальные азотистые вещества. При острой почечной недостаточности концентрация мочевины в крови достигает 50–83 ммоль/л (норма 3,3–6,6 ммоль/л).

Повышение содержания мочевой кислоты в крови (гиперурикемия) – главный симптом подагры. При подагре уровень мочевой кислоты в сыворотке крови возрастает до 0,5–0,9 ммоль/л и даже до 1,1 ммоль/л.

История открытия

В 1772 году Генри Кавендиш провёл опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью.

При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент), и описал его как мефитический воздух (от английского mephitic — ‘вредный’). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.

Интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон.

Джозеф Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, также неверно истолковал полученные результаты — он решил, что выделил флогистированный воздух (т. е. насыщенный флогистоном).

В сентябре 1772 года шотландский химик Даниэль Резерфорд опубликовал магистерскую диссертацию «О так называемом фиксируемом и мефитическом воздухе», в которой описал азот как вредный, ядовитый воздух и предположил, что это новый химический элемент, а также описал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания).

В то же время азот выделил Карл Шееле: летом 1772 года он получил азот по методу Кавендиша и исследовал его в течение пяти лет, затем опубликовал результаты своих исследований. В этой публикации Шееле первым описал воздух как смесь отдельных газов: «огненного воздуха» (кислорода) и «грязного воздуха» (азота). Из-за того, что Шееле задержался с публикацией своих исследований, до сих пор идут споры о первооткрывателе азота.

Источники

Основными источниками азота является вдыхаемый человеком воздух, а также продукты питания, как животного, так и растительного происхождения, содержащие в себе белок.

Недостаток

Вряд ли, представляется возможным оценить, как на организм влияет недостаток азота, поскольку он входит в состав множества необходимых человеку веществ. Поэтому можно оценивать влияние нехватки лишь конкретных его соединений. Например, результатом дефицита азота, как составляющей части белка, является общее замедление роста организма.

Перегонка воздуха

Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.

Получение азота

В лабораториях чистый азот получают обычно нагреванием концентрированного водного раствора азотисто-кислого аммония или раствора смеси хлористого аммония с азотистокислым натрием:

Предлагаем ознакомиться  Рецепты для начинающих, Торт без выпечки

NH4Cl NaNO2 = N2 NaCl 2H2O.

В технике азота с примесью до 3% аргона получают фракционированной перегонкой жидкого воздуха.

Применение азота

Свободный азот как химически неактивный газ применяется в лабораторной практике и технике во всех случаях, когда наличие в окружающей атмосфере кислорода недопустимо или нежелательно, например при проведении биологического эксперимента в анаэробных условиях, при переливании больших количеств горючих жидкостей (для предотвращения пожаров) и так далее.

Распространённость

Азот — один из самых распространённых элементов на Земле. Вне пределов Земли азот обнаружен в газовых туманностях, солнечной атмосфере, на Уране, Нептуне, в межзвёздном пространстве и др. Атмосферы таких планет-спутников как Титан, Тритон, а также карликовой планеты Плутон в основном состоят из азота. Азот — четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода).

Азот в форме двухатомных молекул N2 составляет большую часть атмосферы Земли, где его содержание составляет 75,6 % (по массе) или 78,084 % (по объёму), то есть около 3,87⋅1015 т.

Содержание азота в земной коре, по данным разных авторов, составляет (0,7—1,5)⋅1015 т (причём в гумусе — порядка 6⋅1010 т), а в мантии Земли — 1,3⋅1016 т. Такое соотношение масс заставляет предположить, что главным источником азота служит верхняя часть мантии, откуда он поступает в другие оболочки Земли с извержениями вулканов.

Масса растворённого в гидросфере азота, учитывая, что одновременно происходят процессы растворения азота атмосферы в воде и выделения его в атмосферу, составляет около 2⋅1013 т, кроме того, примерно 7⋅1011 т азота содержатся в гидросфере в виде соединений.

Реакция воздуха с раскалённым коксом

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом, при этом образуется так называемый «генераторный», или «воздушный», газ — сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.

Суточная потребность

Суточная потребность азота в составе вышеперечисленных органических веществ с пищей, установлена в размере 8-16 г. Подсчитано, что в состоянии азотистого равновесия организм взрослого здорового человека потребляет и соответственно выделяет примерно 15 г азота в сутки; из экскретируемого с мочой количества азота на долю мочевины приходится около 85%, креатинина – около 5%, аммонийных солей – 3%, мочевой кислоты – 1% и на другие формы – около 6%.

Токсикология азота и его соединений

Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь.

Многие соединения азота очень активны и нередко токсичны.

Токсичность

Неорганические соединения азота, как правило, токсичны, за исключением простого вещества N2 и в небольших количествах N2O.

Другие оксиды азота NO2, N2O3 сильно токсичны и способны вызвать удушье и отек легких. Особенно токсичен нитрит-ион NO2-, потому что он окисляет метгемоглобин и нарушает процесс переноса О2 в организме. Кроме этого, нитрит-ион образует в желудке канцерогенный нитрозоамин.

Вдыхание паров аммиака NH3 в больших количествах вредно, так как аммиак создает сильнощелочную среду на поверхности слизистых оболочек гортани и легких, что вызывает их раздражение и отек.

Оцените статью
Ключ к успеху
Adblock detector